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Abstract

In this paper, a strategy for an autonomous landing ma-
neuver for an underactuated, unmanned aerial vehicle
(UAV) using position information obtained from a sin-
gle monocular on-board camera is presented. Although
the UAV is underactuated in translational control in-
puts (i.e., a lift force can only be produced), the pro-
posed controller is shown to achieve globally uniform ul-
timate boundedness (GUUB) in position regulation er-
ror during the landing approach. The proposed vision-
based control algorithm is built upon homography-based
techniques and Lyapunov design methods.

1 Introduction

Underactuated autonomous vehicles such as underwater ve-

hicles, aircrafts, and helicopters are typically equipped with

a lower number of control inputs than degrees of freedom

to reduce factors such as weight, complexity, and power

consumption. As a result, these vehicles may not be fully

equipped with sufficient translational actuators that al-

low for independent translation along any given direction.

Hence, the control design for these underactuated vehicles

are complicated due to the fact that the rotational torques

must be coupled with the translational system in order to

achieve the overall position objective.

In addition to the challenges involved in the design of a

control strategy for underactuated dynamic systems, there

exists the problem of accurate position measurement in such

machines. Flying machines are usually equipped with on-

board inertial sensors which only measure the rate of mo-

tion. The position information is thus obtained from time

integration of rate data, resulting in potential drift over

time due to sensor noise. To overcome this problem, the

use of a vision sensor and computer vision techniques within

the feedback loop of such systems is becoming increasingly

attractive, due to their ever decreasing size and cost of im-

plementation relative to the computing power required for

processing the visual data. Performance analysis of a vi-

sual sensor in the feedback loop has been reported in great

detail in [10], where visual data was utilized for the estima-

tion of position and velocity of a helicopter during a landing

procedure. Experimental results of this approach were sub-

sequently published in [11]. In addition, simulation results
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for the dynamic control of the X4 flyer based on visual feed-

back was presented in [13].

In this paper, a single calibrated monocular camera is uti-

lized as a feedback sensor within a position regulation con-

trol scheme for an unmanned aerial vehicle (UAV) during

a landing maneuver. The UAV is assumed to be equipped

with Inertial Navigation Sensors (INS) from which veloc-

ity information can be calculated. A homography-based

approach, described in [12] and reported in such visual ser-

voing related works as [2] and [14] has been utilized for the

determination of the position and orientation of the UAV

with respect to the landing pad. The homography-based

approach is well suited for this application, since all visual

markers are embedded on a flat planar landing pad. Similar

to the approach followed in [1], a constant design vector is

integrated within the filtered regulation error signal, result-

ing in an input matrix that facilitates an advantageous cou-

pling of translational dynamics of the UAV to the rotational

torque inputs. Additionally, the null space of this input ma-

trix is exploited to achieve a secondary control objective of

damping the orientation error signal of the UAV to within

a neighborhood about zero which can be made arbitrar-

ily small through the proper selection of design parameters

(i.e., global uniform ultimate boundedness (GUUB)).

The remainder of the paper is organized in the following

manner. In Section 2, the geometric relationship between

the coordinate frames of the UAV and the landing pad are

expressed in terms of a sequence of images of the landing

pad acquired from an on-board camera. A simplified dy-

namic model of a rigid body, underactuated UAV is subse-

quently presented in Section 2.2. The problem formulation,

assumptions, and position regulation control objective are

presented in Section 3. The control development, based on

the rigid body dynamics and the position error information

determined from the vision system, are provided in Section

4 along with a Lyapunov based stability analysis. Conclu-

sions are presented in Section 5.

2 System Model

2.1 Vision System and Geometric Model

In order to obtain accurate position information, an aer-

ial vehicle is outfitted with an on-board camera such that

the optical axis is coincident with the vertical axis of the

UAV body fixed frame, denoted by B. The landing surface,
denoted by π, is augmented with many stationary, copla-
nar visual markers Oi, all of them assumed to be in the



Figure 1: The relationship between inertial and body
fixed coordinate frames for a UAV on a landing

approach.

field of view of the camera throughout the entire landing

approach. The Euclidean position of the UAV with respect

to the inertial frame I is represented by P (t) ∈ R3, and
the orientation of the UAV B is expressed through the ro-
tational matrix R(t) ∈ SO(3) where R(t) represents the
mapping R : B → I. Bd represents the desired landing ori-
entation of the UAV, Pd ∈ R3 denotes the desired, constant
position vector, and Rd ∈ SO(3) denotes the constant or-
thogonal rotation matrix with the following mapping char-

acteristics Rd : Bd → I. As shown in Figure 1, the transla-
tion and rotation of the frame Bd relative to B is quantified
by Pe(t) ∈ R3 and Re(t) ∈ SO(3), respectively, where Re
represents the mapping Re : Bd → B.
Let m̄i(t), m̄id ∈ R3 denote the Euclidean coordinates of
the ith visual marker Oi on the landing surface relative to
the camera at position B and Bd, respectively. From the

geometry between the coordinate frames, m̄i(t) and m̄id

are related as follows

m̄i = Pe +Rem̄id. (1)

Also illustrated in Figure 1, nπ ∈ R3 denotes the known
constant normal to the plane π expressed in the coordinates
of Bd, and the constant dπ 6= 0 ∈ R denotes the distance of
the landing surface π from the origin of the frame Bd. It
can be seen from Figure 1 that for all i visual markers, the
projection of m̄id along the unit normal nπ is given by

dπ = n
T
π m̄id. (2)

Using (2), the relationship in equation (1) can be expressed

in the following manner

m̄i =

µ
Re +

1

dπ
Pen

T
π

¶
| {z } m̄id

H

(3)

where H(t) ∈ R3×3 represents a Euclidean Homography
[12]. To express the above relationship in terms of the mea-

surable image space coordinates of the visual markers rel-

ative to the camera frame, the normalized Euclidean coor-

dinates mi(t),mid ∈ R3 for the visual markers are defined
as

mi ,
m̄i

zi
, mid ,

m̄id

zid
(4)

where zi(t) and zid are the third coordinate elements in
the vectors m̄i(t) and m̄id, respectively. The 2D homoge-

neous image coordinates of the visual markers, denoted by

pi(t), pid ∈ R3, expressed relative to B and Bd, respectively,
are related to the normalized Euclidean coordinates by the

pin-hole model of [4] such that

pi = Ami, pid = Amid (5)

where A ∈ R3×3 is a known, constant, upper triangular and
invertible intrinsic camera calibration matrix [14]. Hence

the relationship in (3) can now be expressed in terms of

image coordinates of the corresponding feature points in B
and Bd as follows

pi =
zid
zi|{z} A

µ
Re +

1

dπ
Penπ

T

¶
A−1| {z } pid

αi G

(6)

where αi(t) ∈ R denotes the depth ratio. The matrix G(t) ∈
R3×3 in (6) is a full rank homogeneous collineation matrix
defined up to a scale factor [14], and contains the motion

parameters Pe(t) and Re(t) between the frames B and Bd.
Given pairs of image correspondences (pi(t), pid) for four
feature points Oi, at least three of which are non-collinear,
the set of linear equations in (6) can be solved to compute a

unique G(t) up to a scale factor [12]. When more than four
feature point correspondences are available, G(t) can also
be recovered (again, up to a scale factor) using techniques

such as least-squares minimization. G(t) can then be used
to uniquely determine H(t), taking into account its known
structure to eliminate the scale factor, and the fact that

the intrinsic camera calibration matrix A is assumed to be
known [12]. By utilizing various techniques (e.g., see [5,

12, 16]), H (t) can be decomposed to recover the rotational
component Re(t) and the scaled translational component
1

dπ
Pe(t); therefore, Re(t) and

1

dπ
Pe(t) are assumed to be

measurable during the subsequent control development.

2.2 Dynamic Model of a UAV

In this paper, a UAV that is fully actuated with respect to

orientation but underactuated with respect to translation is

considered (i.e., the UAV is equipped with only one control

input (the thrust force) to facilitate translational motion).

The control development is focused on the rigid body dy-

namics of the UAV. That is, actuator dynamics are not

considered within the scope of the design. After denoting

v(t),ω(t) ∈ R3 as the translational and rotational velocities
of the UAV relative to the inertial frame I expressed in the
body frame B, the rigid body dynamics can be described
by the following equations [13]

Ṗ = Rv (7)

mv̇ = −mS(ω)v +N1(·) + Ff (8)

Ṙ = RS(ω) (9)

Jω̇ = −S(ω)Jω +N2(·) + Ft (10)

where S(·) ∈ R3×3 denotes a skew-symmetric matrix de-
fined in [15], J ∈ R3×3 denotes the constant moment of in-
ertia around the center of mass expressed in body frame B,
and m ∈ R1 represents the constant mass of the UAV. The
term N1 (P, v,R, t) ∈ R3 represents the sum of gravitational



forces and additional time varying unmodeled bounded dy-

namics such as aerodynamic resistance. Similarly, the term

N2 (P, v,R,ω, t) ∈ R3 include unmodeled, bounded distur-
bances within the rotational dynamics. The forces and

torques on the rigid body due to the actuators are denoted

by Ff (t), Ft(t) ∈ R3, respectively, expressed in the body
frame B, and given as follows

Ff = B1u1 (11)

Ft =
£
u2 u3 u4

¤T
(12)

where u1(t) ∈ R1 denotes the magnitude of the thrust
force and B1 =

£
0 0 1

¤T ∈ R3 is a constant

unit vector in the body fixed frame B in the direc-

tion of the thrust force. The force and torque inputs£
u1(t) u2(t) u3(t) u4(t)

¤T ∈ R4 are related to the
corresponding actuator control signals through dynamics

that not considered within the scope of this control design.

For example, the four rotor velocities $i ∈ R1 for a Quad-
Rotor UAV are related to the rigid body forces and torques

via the following relationship [6]⎡⎢⎢⎣
u1
u2
u3
u4

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−b −b −b −b
0 db 0 −db
db 0 −db 0
k −k k −k

⎤⎥⎥⎦
⎡⎢⎢⎣
$2
1

$2
2

$2
3

$2
4

⎤⎥⎥⎦ (13)

where d ∈ R1 denotes the displacement of each rotor rel-
ative to the center of mass of the airframe, and k, b ∈ R1
are constant parameters that depend on construction and

aerodynamic properties of the rotor blades.

3 Problem Formulation

The control design is developed under the assumptions that

the translational and rotational velocity signals v(t) and
ω(t), are measurable via on-board sensors and that the UAV
mass m and the UAV inertia matrix J are assumed to be
known. In addition, the desired position and orientation at

landing, defined by Pd and Rd, respectively, are specified.
The overall objective is to design the control inputs Ff (t)
and Ft(t) to regulate the UAV position P (t) to the desired
landing position Pd. Since the UAV has only one transla-

tional actuator oriented along a fixed direction defined by

the vector B1, the force input signal Ff (t) must be designed
in conjunction with the torque input vector Ft(t) to achieve
the desired objective. To this end, the position regulation

error signal ep(t) ∈ R3 is defined to quantify the mismatch
between the desired and actual position of the UAV as given

by

ep ,
1

dπ
RT (P − Pd) = − 1

dπ
Pe (14)

where the fact that Pd = P +RPe has been utilized.

In addition, it is assumed that a reference image (defined

by image coordinates pid) of all visual markers from the

on-board camera when the UAV is at the desired landing

configuration defined by Pd and Rd, and denoted by Bd
is available. As discussed in Section 2.1, the stereo-like

imaging technique allows us to compute the scaled position
1

dπ
Pe(t) and orientation Re(t) of the UAV relative to the

frame Bd from a sequence of images from the camera on

board.

Remark 1 Since the desired landing configuration defined

by Pd and Rd, and the normal vector to the landing sur-
face nπ are assumed to be known, the distance dπ can be
computed in the following manner

dπ = −nTπRTd Pd. (15)

Hence, the scale ambiguity in
1

dπ
Pe(t) from the decompo-

sition of homography can be resolved resulting in calcula-

tion of Pe(t). This allows for the computation of the time
varying position P (t) and orientation R(t) of the UAV as

follows

R = RdR
T
e (16)

P = Pd −RPe. (17)

4 Control Development

After taking the time derivative of (14), and using (7) and

(9), the open loop error dynamics for ep (t) can be expressed
as follows

ėp = −S(ω)ep + 1

dπ
v. (18)

To facilitate the regulation of the position error, a filtered

regulation error signal r(t) ∈ R3 is defined in the following
manner

r , v + kpep + δ (19)

where kp ∈ R1 denotes a positive, scalar constant, and
δ =

£
δ1 δ2 δ3

¤T ∈ R3 represents a constant design
vector of positive elements that facilitates an advantageous

coupling of the translational dynamics of the UAV to both

the translational and rotational control inputs. After taking

the time derivative of (19), substituting the translational

dynamics from (8) and the open loop error dynamics from

(18), the open loop dynamics for the filtered regulation er-

ror signal r (t) can be developed as follows

ṙ = v̇ + kpėp

= −S(ω)r +
∙
1

m
B1u1 − S(δ)ω

¸
+
1

m
N1 +

kp
dπ
v

(20)

where the term S(ω)δ has been added and subtracted to
the right hand side of the above equation and the fact that

S(ω)δ = −S(δ)ω has been utilized. The bracketed terms in
the above equation can be written in terms of a constant

auxiliary matrix B̄ ∈ R3×4 and an auxiliary vector Ū(t) ∈
R4 in the following manner

1

m
B1u1 − S(δ)ω = B̄Ū (21)

where

B̄ ,

⎡⎢⎣ 0 0 δ3 −δ2
0 −δ3 0 δ1
1

m
δ2 −δ1 0

⎤⎥⎦ (22)

Ū ,
£
u1 ω1 ω2 ω3

¤T
. (23)

In order to proceed with the control development, the an-

gular velocity error signal η(t) ∈ R3 and the desired control
signal Ūd(t) ∈ R4 are defined in the following manner

η , ωd − ω (24)

Ūd ,
£
u1 ωTd

¤T
(25)



where ωd(t) ∈ R3 represents a desired angular velocity sig-
nal. From (23), (24) and (25), the following relationship

can be observed

Ū = Ūd −ΠT η (26)

where Π ∈ R3×4 denotes the following constant matrix

Π =

⎡⎣ 0 1 0 0
0 0 1 0
0 0 0 1

⎤⎦ . (27)

The desired control input signal Ūd(t) is designed in the
following manner

Ūd = B̄
+Uaux +

¡
I4 − B̄+B̄

¢
Uself (28)

where B̄+ , B̄T
¡
B̄B̄T

¢−1 ∈ R4×3 denotes the pseudo-
inverse of the constant matrix B̄, I4 ∈ R4×4 represents
the identity matrix, Uaux(t) ∈ R3 and Uself (t) ∈ R4 de-
note yet to be designed auxiliary control signals. In order

for B̄+ to exist, B̄ must be of rank 3 which can be easily

satisfied through proper selection of the auxiliary matrix δ

(e.g., δ =
£
0 0 δ3

¤T
where δ3 6= 0).

Since the term
¡
I4 − B̄+B̄

¢
in (28) projects the vector

Uself (t) into the null space of B̄(t), the design of Uself (t)
has no direct influence on the dynamics of r(t). Therefore
from (20), (21), (26) and (28), the open loop dynamics for

r(t) are given by the following expression

ṙ = −S(ω)r + Uaux − B̄ΠT η + kp
dπ
v + N̄1 (29)

where, N̄1(·) = 1
m
N1(·) ∈ R3, and the following two prop-

erties of the pseudo-inverse were employed [9]

B̄B̄+ = I3
B̄
¡
I4 − B̄+B̄

¢
= 0

(30)

where I3 ∈ R3×3 represents the identity matrix. Since

Uself (t) does not appear within the dynamics of (29), the
auxiliary control input Uself (t) can be designed to achieve
a secondary control objective, such as the damping of the

orientation error of the UAV. To this end, orientation error

signal eθ(t) =
£
eθ1(t) eθ2(t) eθ3(t)

¤ ∈ R3 is defined in
terms of the axis-angle representation [15] of the orientation

matrix Re(t) in the following manner

eθ = µφ (31)

where µ(t) ∈ R3 represents a unit axis of rotation, φ(t) ∈ R1
denotes the rotation angle about µ(t) (confined to the region
−π < φ(t) < π) and is explicitly defined in the following
manner

φ = cos−1
µ
1

2
(tr(Re)− 1)

¶
S (µ) =

Re −RTe
2 sin(φ)

(32)

where the notation tr(·) denotes the trace of a matrix. After
taking the time derivative of (31), the kinematics of the

moving UAV frame is expressed as follows [2]

ėθ = −Lωω (33)

where the bounded, invertible, Jacobian like term Lω(t) ∈
R3×3 is given by the following expression

Lω = I3 − φ

2
S (µ) +

⎛⎜⎜⎝1− sinc (φ)

sinc2
µ
φ

2

¶
⎞⎟⎟⎠ S (µ)2 ,

sinc (φ) , sin (φ)

φ
.

(34)

For more details on the derivation of (34), the reader is

referred to [2]. The kinematics for the UAV can be rewritten

in terms of the backstepping velocity error signal η(t) and
the desired control signal Ūd(t) in the following manner

ėθ = Lω
¡
η −ΠŪd

¢
. (35)

After substituting for Ūd(t) from (28), ėθ (t) can be rewrit-
ten in the following manner

ėθ =
£
Lωη − LωΠB̄+Uaux

¤
−LωΠ

¡
I4 − B̄+B̄

¢
Uself

= −BT
mUself +N3

(36)

where BT
m(t) ∈ R3×4 is a bounded, differentiable matrix

defined as follows

BT
m = LωΠ

¡
I4 − B̄+B̄

¢
(37)

and the bracketed terms in (36) have been redefined by the

single term N3(·) ∈ R3.
Based on the subsequent stability analysis, the control sig-

nals Uaux(t) and Uself (t) are designed as follows

Uaux = −ep − krr − kp
dπ
v − r ζ

2
1

ε1
(38)

Uself = kθBmTanh (eθ) (39)

where kr, kθ ∈ R1 are positive, scalar control gains chosen
such that kp > kr > 0, ε1 ∈ R1 is a positive, scalar constant,
Tanh(eθ) ∈ R3 is a vector function defined in the following
manner

Tanh (eθ) =
£
tanh (eθ1) tanh (eθ2) tanh (eθ3)

¤T
(40)

and ζ1(·) ∈ R1 is a known positive, scalar, differentiable,
non-decreasing bounding function selected such that°°N̄1

°° ≤ ζ1
¡kPk

s
, kvk

s

¢
(41)

and the function k.k
s
is defined in the following manner

kyk
s
,
p
yT y + σ, ∀y ∈ R3 (42)

where σ ∈ R1 represents a small positive constant.

Remark 2 The function in (42) has been utilized instead of

the standard Euclidean norm to ensure that the time deriv-

ative of ζ1(·) in (41) is well-defined. The time derivative of
k.k

s
is expressed as follows

d

dt
kyk

s
=

yT ẏp
yT y + σ

, ∀y ∈ R3. (43)



Remark 3 The subsequent stability analysis will require

that Uself (t) ∈ L∞ be independent of the boundedness of

eθ(t) thus motivating the design of Uself (t) in terms of

Tanh(eθ) .

The control force input Ff (t) can be obtained from Ūd(t)
in (28) as follows

Ff = B2Ūd (44)

where B2 ∈ R3×4 is a constant matrix defined as follows

B2 =

⎡⎣ 0 0 0 0
0 0 0 0
1 0 0 0

⎤⎦ .
In order to design the control torque input Ft(t), the open-
loop dynamics of η(t) are formulated by differentiating (24)
and substituting the rotational dynamics given in (10) as

follows

J η̇ = Jω̇d + S(ω)Jω −N2 − Ft. (45)

The signal ω̇d(t) of (45) is computed from the time deriv-

ative of Ūd(t) in (28); moreover the resulting expression

can be written as a sum of two terms ˙̄Ud1(t) ∈ R4 and
˙̄Ud2(t) ∈ R4, where ˙̄Ud1(t) is composed of the known terms

of ˙̄U(t), and ˙̄Ud2(t) is composed of uncertain terms (see the

Appendix for explicit forms of ˙̄Ud1(t) and
˙̄Ud2(t)). Hence,

(45) can be rewritten as

J η̇ = JΠ ˙̄Ud1 + S(ω)Jω − N̄2 − Ft (46)

where the uncertain terms have been lumped into a single

term N̄2(t) ∈ R3 which is defined as follows

N̄2 = N2 − JΠ ˙̄Ud2. (47)

Based on the subsequent stability analysis, the control

torque input Ft(t) is designed in the following manner

Ft = JΠ
˙̄Ud1 + S(ω)Jω + krη −ΠB̄T r + η

ζ22
ε2

(48)

where ε2 ∈ R1 represents a positive, scalar constant, and
ζ2(·) ∈ R1 is a known positive, scalar, non-decreasing

bounding function constructed such that°°N̄2

°° ≤ ζ2 (kPk , kvk , kωk) . (49)

4.1 Stability Analysis

Theorem 1 Given the error dynamics of (18), (29) and

(45), the translational force input and the rotational torque

input developed in (44) and (48), respectively, guarantees

that the position error signal ep(t) is exponentially regulated
into a neighborhood about zero (GUUB)

kep(t)k ≤ α1 exp (−α2t) + α3 (50)

where α1,α2,α3 ∈ R1 are adjustable, positive constants.

Proof: In order to illustrate the position regulation result

of (50), the following non-negative scalar function is defined

V , 1

2
dπe

T
p ep +

1

2
rT r +

1

2
ηTJη. (51)

After taking the time derivative of (51), substituting the

dynamics for ėp(t), ṙ(t) and η̇(t) from (18), (29) and (45),

and substituting the expressions for Uaux(t) and Ft(t) from
(38) and (48), the time derivative for V (t) can be expressed
in the following manner

V̇ ≤ −kr kepk2 − kr krk2 − kr kηk2

+

∙
krk ζ1 −

krk2 ζ21
ε1

¸
+

∙
kηk ζ2 −

kηk2 ζ22
ε2

¸
+
£kepk kδk− k kepk2¤

(52)

where k = kp−kr ∈ R1 is a positive constant (recall that the
control gain kr in (38) is selected such that kp > kr > 0).
After applying the nonlinear damping argument from [8],

each of the bracketed terms in the above expression can be

upper-bounded as follows

krk ζ1
µ
1− krk ζ1

ε1

¶
≤ ε1

kηk ζ2
µ
1− kηk ζ2

ε2

¶
≤ ε2

kepk (kδk− k kepk) ≤ kδk2
k

(53)

From (52), V̇ (t) can be further upper bounded in the fol-
lowing manner

V̇ ≤ −kr kzk2 + ε (54)

where z ,
£
eTp rT ηT

¤T ∈ R9 and ε , ε1+ε2+
kδk2
k
∈

R1. Note that V (t) in (51) satisfies the following inequality

β11 kz(t)k2 ≤ V (t) ≤ β12 kz(t)k2 (55)

where the constant parameters β11,β12 ∈ R1 are given by

β11 = min

µ
1

2
,λmin (J)

¶
, β12 = max

µ
1

2
,λmax (J)

¶
(56)

and λmin(J),λmax(J) ∈ R1 denote the minimum and maxi-

mum eigenvalues of the inertia matrix J, respectively. From
(51), (54) and (55), the position error signal ep (t) can be
upperbounded by the following

kep(t)k ≤ V (t) ≤ α1 exp(−α2t) + α3 (57)

where α1 = V (0), α2 =
kr
β12

, and α3 =
ε

α2
are positive

scalar constants.

From (54) and (55), it is straightforward to see that

ep(t), r(t), η(t) ∈ L∞. Since R(t) ∈ L∞ and Pd ∈ L∞,
we can conclude that P (t) ∈ L∞ based on the position

error signal definition of (14). From (19), we observe that

v(t) ∈ L∞, hence, Uaux(t) ∈ L∞. Based on the fact that
ep(t) and v(t) are bounded, we can use (18) to show that

ėp(t) ∈ L∞.After utilizing (20), (28) and (29), we can deter-
mine that ṙ(t), v̇(t) ∈ L∞, and hence, U̇aux(t) ∈ L∞. Since
Uself (t) was designed to be bounded through the utilization
of Tanh(·), it can be shown from (28) that Ūd(t) ∈ L∞,
and hence, ωd(t), Ū(t), u1(t),ω(t) ∈ L∞. Based on the time
derivative of Uself (t) in the Appendix, we observe that

U̇self (t) ∈ L∞. Hence ˙̄Ud(t) ∈ L∞, and therefore, it can be
shown that ω̇d(t), Ft(t), ω̇(t), η̇(t) ∈ L∞. From the preced-

ing stability trace, we can conclude that Ff (t) ∈ L∞ from



(44). Therefore, all signals remain bounded during closed
loop operation.

Remark 4 With Uself (t) designed as shown in (39), the
expression of (36) can now be written as follows

ėθ = −kθBT
mBmTanh (eθ) +N3 (58)

It is apparent from (58) that Uself (t) has been designed to
damp the orientation error signal eθ(t), since Theorem 1

has illustrated that N3(·) ∈ L∞.

5 Conclusions

In this paper, a nonlinear controller was developed to

achieve position regulation of a rigid, underactuated aerial

vehicle during a landing approach using position informa-

tion obtained from an on-board monocular camera. The

controller was shown to achieve globally uniform ultimate

boundedness (GUUB) in position regulation error despite

uncertain bounded disturbances in the system dynamics.

Additionally, the null space of an input matrix in the con-

troller was exploited to achieve a secondary control objec-

tive of damping the orientation error of the UAV relative

to the desired orientation at landing.
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Appendix A: Time Derivative of Ūd(t)

After taking the time derivative of Ūd(t) in (28), the follow-
ing expression is obtained

˙̄Ud = B̄
+U̇aux +

¡
I4 − B̄+B̄

¢
U̇self (59)

where the time derivative of Uaux(t) can be computed from
(38) as follows

U̇aux = S(ω)ep +
kp
dπ
S(ω)v − 1

dπ
v − kp

mdπ
B2Ūd

+

µ
kr +

ζ21
ε1

¶µ
S(ω)r − Uaux + B̄ΠT η − kp

dπ
v

¶
−
µ
kr +

ζ21
ε1
+
kp
dπ

¶
N̄1 − 2r ζ1

ε1
ζ̇1.

(60)

The time derivative of Uaux(t) can be separated into mea-
surable and unmeasurable bounded terms U̇aux1(t) and
U̇aux2(t), respectively, as follows

U̇aux1 = S(ω)ep +
kp
dπ
S(ω)v − 1

dπ
v − kp

mdπ
B2Ūd

+

µ
kr +

ζ21
ε1

¶µ
S(ω)r − Uaux − kp

dπ
v

+B̄ΠT η
¢− 2r ζ1

ε1
ζ̇11

(61)

U̇aux2 = −
µ
krN̄1 +

ζ21
ε1
N̄1 +

kp
dπ
N̄1 + 2r

ζ1
ε1
ζ̇12

¶
(62)

where the known and unknown terms in the time derivative

of ζ1(·) has been separated into ζ̇11(·) ∈ R1 and ζ̇12(·) ∈ R1,
respectively. Similarly after taking the time derivative of

(39), the time derivative of Uself (t) can be expressed as
follows

U̇self = BθL
T
ω [I−

diag
¡
tanh

2 (eθ1) , tanh
2 (eθ2) , tanh

2 (eθ3)
¢¤
ėθ

+BθL̇
T
ωTanh (eθ) (63)

where diag(.) denotes a diagonal matrix with arguments
as the diagonal entries, the constant matrix Bθ ∈ R4×3 is
defined as

Bθ = kθ
¡
I4 − B̄+B̄

¢T
ΠT (64)



and the time derivative of the Jacobian like term Lω(t) can
be shown to be the following

L̇ω = =

(
1
4

Ã
φ− sin(φ)
sin2(φ

2
)

!
µT
¡
I3 + S(µ)

2
¢
ėθ

)
S(µ)2

+

⎛⎜⎜⎝ sinc (φ)

sinc2
µ
φ

2

¶ − 1
⎞⎟⎟⎠µ 1φµėTθ S(µ)2

+
1

φ
S(µ)2ėθµ

T

¶
− 1
2
S(ėθ).

(65)

The time derivative of Ūd(t) can now be written as a sum

of a measurable ˙̄Ud1(t) ∈ R4 and an unmeasurable ˙̄Ud2(t) ∈
R4 term each defined in the following manner

˙̄Ud1 = B̄+U̇aux1 +
¡
I4 − B̄+B̄

¢
U̇self (66)

˙̄Ud2 = B̄+U̇aux2. (67)


